f(x)为奇函数,则满足f(0)=0,f(0)=a,所以a=0
所以f(x)=x/(x^2+bx+1)
f(-x)=-x/(x^2-bx+1)
f(-x)=-f(x)=-x/(x^2+bx+1)
所以-b=b,得b=0
f(x)=x/(x^2+1)
(2)在[-1,1]单调增,(-∞,-1)∪(1,+∞)单调减
设
f(x)为奇函数,则满足f(0)=0,f(0)=a,所以a=0
所以f(x)=x/(x^2+bx+1)
f(-x)=-x/(x^2-bx+1)
f(-x)=-f(x)=-x/(x^2+bx+1)
所以-b=b,得b=0
f(x)=x/(x^2+1)
(2)在[-1,1]单调增,(-∞,-1)∪(1,+∞)单调减
设