1、设t=b-c s=a-c
把原不等式两边相减,得到
a^2*t-b^2*s+c^2*(s-t)=(c^2+2cs+s^2)*t-(c^2+2tc+t^2)*s+c^2*(s-t)=s^2*t-t^2*s=st*(s-t)>0
得证
2、(1)由a+b+c=6,得a+c=6-b,用均值不等式,6-b=a+c>=2倍跟号下ac=2b,解出b=2ac=2b^2
所以cosB
1、设t=b-c s=a-c
把原不等式两边相减,得到
a^2*t-b^2*s+c^2*(s-t)=(c^2+2cs+s^2)*t-(c^2+2tc+t^2)*s+c^2*(s-t)=s^2*t-t^2*s=st*(s-t)>0
得证
2、(1)由a+b+c=6,得a+c=6-b,用均值不等式,6-b=a+c>=2倍跟号下ac=2b,解出b=2ac=2b^2
所以cosB