解题思路:(I)首先将两函数联立得出ax2-2bx+c=0,再利用根的判别式得出它的符号即可;
(II)利用线段AB在x轴上的射影A1B1长的平方,以及a,b,c的符号得出|A1B1|的范围即可.
依题意,知a、b≠0
∵a>b>c且a+b+c=0
∴a>0且c<0
(Ⅰ)令f(x)=g(x),
得ax2+2bx+c=0.(*)
△=4(b2-ac)
∵a>0,c<0,∴ac<0,∴△>0
∴f(x)、g(x)相交于相异两点.
(Ⅱ)设方程的两根为x1,x2,则|A1B1|2=[A
a2=4[(
c/a]+[1/2])2+[3/4]],
∵a>b>c,a+b+c=0,
∴a>-(a+c)>c,a>0,
∴-2<[c/a]<-[1/2],
此时3<A1B12<12,
∴
3<|A1B1|<2
3.
点评:
本题考点: 二次函数的图象;二次函数的性质.
考点点评: 本小题主要考查二次函数的图象、二次函数的性质、根的判别式、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题,