(1)证明:
由AD‖BC,点E是AD延长线上的一点,
得DE‖BC,则∠EDC=∠DCB(平行线不同旁两内角相等)
则△EDC与△BCD中,DE=BC,DC=CD,∠EDC=∠DCB
所以△EDC与△BCD全等(两边夹一角)
所以∠E=∠DBC
证明完毕
(2)由DE=BC且DE‖BC,
得四边形DECB为为平行四边形(两对边平行且相等),
则EC=DB(同理)
又因为AC=DB(等腰梯形两对角线相等)
所以AC=EC(等量代换)
所以△ACE为等腰三角形.
(1)证明:
由AD‖BC,点E是AD延长线上的一点,
得DE‖BC,则∠EDC=∠DCB(平行线不同旁两内角相等)
则△EDC与△BCD中,DE=BC,DC=CD,∠EDC=∠DCB
所以△EDC与△BCD全等(两边夹一角)
所以∠E=∠DBC
证明完毕
(2)由DE=BC且DE‖BC,
得四边形DECB为为平行四边形(两对边平行且相等),
则EC=DB(同理)
又因为AC=DB(等腰梯形两对角线相等)
所以AC=EC(等量代换)
所以△ACE为等腰三角形.