2x^4-2x^3-x^2+1=2x^3(x-1)-(x^2-1)=2x^3(x-1)-(x+1)(x-1)=(x-1)[2x^3-(x+1)]=(x-1)(x-1)(2x^2+2x+1)=(x-1)^2(2x^2+2x+1)=(x-1)^2[x^2+(x+1)^2]≥0,所以1+2x^4≥2x^3+x^2.
证明:1+2x^4>=2x^3+x^2
1个回答
相关问题
-
已知x1,x2,x3,x4均为实数,试证明代数式x1^2+x2^2+x3^2+x4^2+x1x2+x1x3+x1x4+x
-
X1>X2>X3>X4>=2 且X2+X3+X4>=X1 证明:(X1+X2+X3)^2=不好意思,以下是正确的:已知x
-
怎样证明f(x)=2^(x1)-4^(x1)-2^(x2)+4^(x2)>0
-
证明|x-1|+|x-2|+|x-3|>=2
-
证明:y=(1+x^2)/(1-X^2+x^4) (-∞
-
证明:1/2≤(x+x+1)/(x+1)≤3/2
-
x1+5x2+2x3-4x4=3 -3x1-2x2+3x3+4x4=-6 -x1+3x2-x3-4x4=-2 -2x1+
-
证明:(x3+5x2+4x-1)-(-x2-3x+2x3-3)+(8-7x-6x2+x3)的值与x无关.
-
29.证明:(1)f(x)=(2x^2+2x+3)/(x^2+x+1)==>f(x)≠2
-
证明:tan²x+1/tan²x=2(3+cos4x)/(1-cos4x)