已知cos(a+pai/6)—sina=4/5根号3,则sin(a—pai/6)的值是?

1个回答

  • 已知cos(a+π/6)—sina=4/5√3,

    cosacosπ/6-sinasinπ/6-sina=4√3/5,

    √3cona/2-sina/2-sina=4√3/5,

    5√3cona-15sina=8√3,

    5√3√(1-sin^2a)=8√3+15sina,

    75-75sin^2a=192+240√3sina+225sin^2a,

    300sin^2a+240√3sina+117=0,

    sina=[120√3±√(3*120^2-300*117)]/300=

    =[120√3±√(43200-35100)]/300=

    =[12√3±√71]/30,

    sina=(12√3+√71)/30,或 sina=(12√3-√71)/30,

    cosa=√(1-sin^2a)=√{1-[(12√3+√71)/30]^2},

    cosa=√(1-sin^2a)=√{1-[(12√3-√71)/30]^2},

    则sin(a—π/6)=sinacosπ/6-cosasinπ/6=

    =(√3/2))√{1-[(12√3+√71)/30]^2}-(1/2)(12√3+√71)/30,

    或者

    sin(a—π/6)=sinacosπ/6-cosasinπ/6=

    =(√3/2))√{1-[(12√3-√71)/30]^2}-(1/2)(12√3-√71)/30.