,在三角ABC中,AB=AC,P为三角形ABC内一点,角BAP=70°,角ABP=40°.连接PC,当角PCB=30°时

1个回答

  • 因为,∠BPA = 180°-∠BAP-∠ABP = 70° = ∠BAP ,

    所以,BA = BP ,可得:△ABP是等腰三角形;

    过点A作AD⊥BC于D,交CP延长线于O,连接OB;

    过点B作BE⊥CP于E,则点E在CO延长线上;

    AD是等腰△ABC底边上的高,可得:AD是BC的垂直平分线,

    而且O在AD上,可得:OB = OC ,

    ∠OBC = ∠OCB = 30° ,

    ∠CBE = 90°-∠OCB = 60° ,

    ∠OBE = ∠CBE-∠OBC = 30° ;

    因为,在△OBD和△OBE中,∠ODB = 90° = ∠OEB ,∠OBD = 30° = ∠OBE ,OB = OB ,

    所以,△OBD ≌ △OBE ,

    可得:OD = OE ,BD = BE ;

    因为,在Rt△ABD和Rt△PBE中,AB = PB ,BD = BE ,

    所以,△ABD ≌ △PBE ,

    可得:AD = PE ;

    因为,在△BOA和△BOP中,OA = AD-OD = PE-OE = OP ,BA = BP ,OB = OB ,

    所以,△BOA ≌ △BOP ,

    可得:∠OBA = ∠OBP = ½∠ABP = 20° ,

    所以,∠PBC = ∠OBC-∠OBP = 10° .