x²+y²/2=1
则:
2x²+y²=2
则:
x√(1+y²)
=(√2/2)×√[(2x²)(1+y²)]
而:√[(2x²)(1+y²)]≤[(2x²)+(1+y²)]/2=(1+2x²+y²)/2=3/2
则:
x√(1+y²)≤(√2/2)×(3/2)=(3√2)/4
最大值是:(3√2)/4
x²+y²/2=1
则:
2x²+y²=2
则:
x√(1+y²)
=(√2/2)×√[(2x²)(1+y²)]
而:√[(2x²)(1+y²)]≤[(2x²)+(1+y²)]/2=(1+2x²+y²)/2=3/2
则:
x√(1+y²)≤(√2/2)×(3/2)=(3√2)/4
最大值是:(3√2)/4