1+n+n^2+n^3=0
1+n+n^2(1+n)=0
(1+n)(1+n^2)=0解得n=-1
则1+n+n^2+n^3+...+n^1999+n^2000
=1-1+1-1+...-1+1
=1(因为该式有2001项,后面项全消掉了)