(1)tan9x+tan2x=0;
tan9x=-tan2x=tan(-2x);
9x=kπ-2x,
11x=kπ,
x=kπ/11,k∈Z
(2)因为tanx/2=(sinx/2)/(cosx/2)=(1-cosx)/sinx
所以cosx+2=2tanx/2可化为:sinxcosx+2sinx=2-2cosx
sinxcosx+2(sinx+cosx)-2=0
令sinx+cosx=t, 则:sinxcosx=(t²-1)/2;
所以有:t²+4t-5=0;
(t-1)(t+5)=0; t=1;
所以:sinx+cosx=1
x=2kπ或x=2kπ+π/2; k∈Z
经检验均符合
(3)cos7x+sin²(2x)=cos²(2x)-cosx
cos7x+cosx=cos²2x-sin²2x=cos4x
cos(4x+3x)+cos(4x-3x)=cos4x
2cos4xcos3x=cos4x
2cos4x(cos3x-½)=0
cos4x=0或cos3x=½
4x=kπ+π/2或3x=2kπ±π/3
x=kπ/4+π/8或x=2kπ/3±π/9; k∈Z