解题思路:观察a2+ab+b2-a-2b式子要求其最小值,只要将所有含有a、b的式子转化为多个非负数与常数项的和的形式.一般常数项即为所求最小值.
a2+ab+b2-a-2b=a2+(b-1)a+b2-2b
=a2+(b-1)a+
(b−1)2
4+b2-2b-
(b−1)2
4
=(a+
b−1
2)2+
3
4b2−
3
2b−
1
4
=(a+
b−1
2)2+
3
4(b−1)2−1≥-1.
当a+
b−1
2=0,b-1=0,
即a=0,b=1时,上式不等式中等号成立,故所求最小值为-1.
点评:
本题考点: 完全平方公式;非负数的性质:偶次方.
考点点评: 本题考查了完全平方公式、非负数的性质.解决本题的关键是将所有含有a、b的式子都转化为多个非负数与常数项的和形式.