分部积分法:∫udv = uv - ∫vdu + c
∫ (1→e)xlnxdx=1/2∫ (1→e)lnxdx^2
=1/2[x^2lnx |(1→e) - ∫ (1→e)x^2dlnx]
=1/2[e^2-x^2/2|(1→e)]
=1/2(e^2-e^2/2+1/2)
=e^2/4+1/4
分部积分法:∫udv = uv - ∫vdu + c
∫ (1→e)xlnxdx=1/2∫ (1→e)lnxdx^2
=1/2[x^2lnx |(1→e) - ∫ (1→e)x^2dlnx]
=1/2[e^2-x^2/2|(1→e)]
=1/2(e^2-e^2/2+1/2)
=e^2/4+1/4