(Ⅰ)设P(x1,y1),Q(x2,y2),
由题设条件可得x1x2+y1y2=0,将y=kx-1代入圆C:(x-1)2+y2=1得(1+k2)x2-2(1+k)x+1=0,
故有x1+x2=
2+2k
1+k2,x1x2=
1
1+k2,
又y1y2=(kx1-1)(kx2-1)=k2x1x2-k(x1+x2)+1=
k2
1+k2−
2k+2k2
1+k2+1=[1−2k
1+k2
∴
1−2k
1+k2+
1
1+k2=0,得k=1;
(Ⅱ)设P,Q两点的坐标为(X1,kX1-1),(X2,kX2-1)
则由圆C:(x-1)2+y2=1及直线l:y=kx-1
得(k2+1)x2-2(k+1)x+1=0
则X1•X2=
1
k2+1,X1+X2=
2(k+1)
k2+1
则
/MP]=(X1,kX1-1-b),
MQ=(X2,kX2-1-b)
由MP⊥MQ则
X1•X2+(kX1-1-b)•(kX2-1-b)=0
即
2k2+2k
k2+1=(b+1)+
1
(b+1)
∵b∈(−
1
2,1),∴
1
2<b+1<2,
∴