已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.

1个回答

  • (Ⅰ)设P(x1,y1),Q(x2,y2),

    由题设条件可得x1x2+y1y2=0,将y=kx-1代入圆C:(x-1)2+y2=1得(1+k2)x2-2(1+k)x+1=0,

    故有x1+x2=

    2+2k

    1+k2,x1x2=

    1

    1+k2,

    又y1y2=(kx1-1)(kx2-1)=k2x1x2-k(x1+x2)+1=

    k2

    1+k2−

    2k+2k2

    1+k2+1=[1−2k

    1+k2

    1−2k

    1+k2+

    1

    1+k2=0,得k=1;

    (Ⅱ)设P,Q两点的坐标为(X1,kX1-1),(X2,kX2-1)

    则由圆C:(x-1)2+y2=1及直线l:y=kx-1

    得(k2+1)x2-2(k+1)x+1=0

    则X1•X2=

    1

    k2+1,X1+X2=

    2(k+1)

    k2+1

    /MP]=(X1,kX1-1-b),

    MQ=(X2,kX2-1-b)

    由MP⊥MQ则

    X1•X2+(kX1-1-b)•(kX2-1-b)=0

    2k2+2k

    k2+1=(b+1)+

    1

    (b+1)

    ∵b∈(−

    1

    2,1),∴

    1

    2<b+1<2,