tan(a+π/4)=2=(tana+tanπ/4)/(1-tanatanπ/4)=(tana+1)/(1-tana)
tana=1/3
(1+2sinacosa)/(cos^2a-sin^2a)
=(sin^2a+cos^2a+2sinacosa)/(cos^2a-sin^2a)(上下同除cos^2a)
=((tan^2a+1+2tana)/(1-tan^2a)
=(1/9+1+2/3)/(1-1/9)
=2
tan(a+π/4)=2=(tana+tanπ/4)/(1-tanatanπ/4)=(tana+1)/(1-tana)
tana=1/3
(1+2sinacosa)/(cos^2a-sin^2a)
=(sin^2a+cos^2a+2sinacosa)/(cos^2a-sin^2a)(上下同除cos^2a)
=((tan^2a+1+2tana)/(1-tan^2a)
=(1/9+1+2/3)/(1-1/9)
=2