An(an,an+1)都在直线x-2y+1=0上,
则a(n)-2a(n+1)+1=0
a(n)-1=2a(n+1)-2=2[a(n+1)-1]
所以,a(n)-1是以1为首项,1/2为公比的等比数列
a(n)-1=(1/2)^(n-1)
a(n)=(1/2)^(n-1)+1
s(n)=[1-(1/2)^n]/[1-(1/2)] +n = 2+n-(1/2)^(n-1)
An(an,an+1)都在直线x-2y+1=0上,
则a(n)-2a(n+1)+1=0
a(n)-1=2a(n+1)-2=2[a(n+1)-1]
所以,a(n)-1是以1为首项,1/2为公比的等比数列
a(n)-1=(1/2)^(n-1)
a(n)=(1/2)^(n-1)+1
s(n)=[1-(1/2)^n]/[1-(1/2)] +n = 2+n-(1/2)^(n-1)