An+Bn=-(2n+1) An*Bn=n^2
式 1/(An+1)(Bn+1)=1/(An+Bn+An*Bn+1)=1/n^2-2n
=1/n(n-2)=1/2[1/(n-2)-1/n] 所以式子最后等于1+1/2-1/19-1/20=531/380
An+Bn=-(2n+1) An*Bn=n^2
式 1/(An+1)(Bn+1)=1/(An+Bn+An*Bn+1)=1/n^2-2n
=1/n(n-2)=1/2[1/(n-2)-1/n] 所以式子最后等于1+1/2-1/19-1/20=531/380