利用sin^2 a+cos^2 a=1,
2sin a cos a
=2sin a cos a/(sin^2 a+cos^2 a)
=2tana/(tan^2 a+1)
=2x2/(4+1)
=4/5.
(sina)^2-sin a cos a -2(cos a)^2
=[(sina)^2-sin a cos a -2(cos a)^2]/(sin^2 a+cos^2 a)
=(tan^2 a-tan a -2)/(tan^2 a+1)
=(4-2-2)/(4+1)
=0.
利用sin^2 a+cos^2 a=1,
2sin a cos a
=2sin a cos a/(sin^2 a+cos^2 a)
=2tana/(tan^2 a+1)
=2x2/(4+1)
=4/5.
(sina)^2-sin a cos a -2(cos a)^2
=[(sina)^2-sin a cos a -2(cos a)^2]/(sin^2 a+cos^2 a)
=(tan^2 a-tan a -2)/(tan^2 a+1)
=(4-2-2)/(4+1)
=0.