12
分析:首先在AC上截取AF=AB,连接EF,由矩形与折叠的性质,即可求得EF⊥AC,又由AE=EC,根据三线合一的性质,即可求得答案.
在AC上截取AF=AB,连接EF,
∵四边形ABCD是矩形,
∴∠B=90°,
根据题意得:∠BAE=∠EAF,∠AFE=∠B=90°,
∴EF⊥AC,
∵AE=EC,
∴AF=CF=AB=6,
∴AC=12.
故答案为:12.
<>
12
分析:首先在AC上截取AF=AB,连接EF,由矩形与折叠的性质,即可求得EF⊥AC,又由AE=EC,根据三线合一的性质,即可求得答案.
在AC上截取AF=AB,连接EF,
∵四边形ABCD是矩形,
∴∠B=90°,
根据题意得:∠BAE=∠EAF,∠AFE=∠B=90°,
∴EF⊥AC,
∵AE=EC,
∴AF=CF=AB=6,
∴AC=12.
故答案为:12.
<>