求解:一道解椭圆方程的数学题椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,C是AB的中点,若|AB|=2√

1个回答

  • 椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,C是AB的中点,|AB|=2√2,O为坐标原点,OC的斜率为(√2)/2

    OC:y=(√2/2)x

    AB:x+y-1=0

    x+(√2/2)x-1=0

    xC=2/(2+√2),yC=√2/(2+√2)

    C[2/(2+√2),√2/(2+√2)]

    xA+xB=2xC=4/(2+√2),yA+yB=2yC=2√2/(2+√2)

    x+y-1=0

    y=1-x

    ax^2+by^2=1

    ax^2+b(1-x)^2=1

    (a+b)x^2-2bx+b-1=0

    xA+xB=2b/(a+b)=4/(2+√2),b=(√2)a

    xA*xB=(b-1)/(a+b)=(√2a-1)/(a+√2a)

    (xA+xB)^2=8/(3+2√2)

    (xA-xB)^2=(yA-yBV)^2=(xA+xB)^2-4xA*xB=8/(3+2√2)-4(√2a-1)/(a+√2a)

    (xA-xB)^2+(yA-yB)^2=AB^2

    2[8/(3+2√2)-4(√2a-1)/(a+√2a)]=(2√2)^2=8

    2/(3+2√2)-(√2a-1)/(a+√2a)=1

    2/(3+2√2)-1=(√2a-1)/(a+√2a)

    (-1-2√2)/(3+2√2)=(√2a-1)/(a+√2a)

    a=1/3

    b=(√2)a=√2/3