(1)因为BC平方+AC平方=AB平方,所以,△ABC是直角三角形,角C=90度.
△ABC的面积=3*4*1/2=6.
△PQC的面积与四边形PABQ的面积相等,则△PQC的面积为△ABC面积的一半.
因为PQ//AB,所以,△PQC相似△ABC,
所以,(CP/CA)^2=△PQC的面积/△ABC的面积=1/2,
CP=2根号2.
(2)由(1)知,△PQC相似△ABC,所以,CP/AC=CQ/BC=PQ/AB,设其比值为k,
则CP=kAC=4k,CQ=kBC=4k,PQ=kAB.
AP=AC-CP=(1-k)AC=4(1-k),BQ=BC-CQ=(1-k)BC=3(1-k).
由 CP+CQ+PQ=AP+BQ+PQ+AB,得 CP+CQ=AP+BQ+AB.
4k+3k=4-4k+3-3k+5,k=5/7,
CP=4*5/7=20/7.
(3)存在.
一:过P作PM垂直AB于M,当PQ=PM时(过Q也要同样做,此时PQ的长相同),作CH垂直AB于H,则CH=BC*AC/AB=12/5.由相似知,(CH-PM)/CH=PQ/AB
AB*(CH-PQ)=CH*PQ,5(12/5-PQ)=12/5PQ,
PQ=20/9;
二:取PQ的中点N,作NM垂直AB于M,则PM=QM,当MN=PQ/2时,三角形PQM为等腰直角三角形.由相似知,(CH-MN)/CH=PQ/AB,AB*(CH-PQ/2)=CH*PQ,
5(12/5-PQ/2)=12/5*PQ,
PQ=120/49.