利用极限存在准则证明:limn趋向于无穷,n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】=
4个回答
lim n【1/(n^2+π)+1/(n^2+2π)+...+1/(n^2+nπ)】
=lim 1/(n+π/n)+1/(n+2π/n)+...+1/(n+π)】
=lim n*1/n
=1
相关问题
利用极限存在准则证明当n→∞是n{[(1/(n^2+π)]+[(1/(n^2+2π)]+[(1/(n^2+3π)]+..
夹逼定理求极限limn[1/(n^2+π)+1/(n^2+2π)……+1/(n^2+nπ)]=1
利用极限存在准则证明limx趋于无穷(1/(n^6+n)^1/2+2^2/(n^6+n)^1/2+.+n^2/(n^6+
lim sin[π(n^2+1)^1/2] n趋向无穷求极限 求详解
lim i/n(sinπ/n+sin2π/n+.+sinnπ/n) n 趋向于正无穷
利用数列极限的定义证明下列极限 lim(n趋向于无穷)n^2+1/n^2-1=1
求函数的极限lim(n趋向无穷)n/2 * R² * (sin2π)/n
求limsin[π根号(n^2+1)],n趋向正无穷.
一道关于大一微积分的问题.lim[n趋向于无穷]π/n(cos^2 π/n+cos^2 2π/n+...+cos^2 (
极限limn→无穷 (2n^2-3n+1)/n+1 sin1/n