结果是:
a(b-c)^2+b(c-a)^2+c(a-b)^2+4abc-(a^3+b^3+c^3)
=a[(b-c)^2-a^2]+b[(c-a)^2-b^2]+c[(a-b)^2+4ab-c^2]
=-a(a+c-b)(a+b-c)-b(a+b-c)(b+c-a)+c[(a+b)^2-c^2]
=-a(a+c-b)(a+b-c)-b(a+b-c)(b+c-a)+c(a+b+c)(a+b-c)
=(a+b-c)[-a(a+c-b)-b(b+c-a)+c(a+b+c)]
=(a+b-c)(-a^2-b^2+2ab+c^2)
=(a+b-c)[c^2-(a-b)^2]
=(a+b-c)(a+c-b)(b+c-a)