因为 C为OP上一点,所以设C(2k,k)
向量CA=OA-OC=(1,7)-(2k,k)=(1-2k,7-k)
向量CB=OB-OC=(5,1)-(2k,k)=(5-2k,1-k)
CA·CB=(1-2k)(5-2k)+(7-k)(1-k)=5k²-20k+12=5(k-2)²-8
当k=2时,CA·CB有最小值为-8,此时,OC=(4,2)
因为 C为OP上一点,所以设C(2k,k)
向量CA=OA-OC=(1,7)-(2k,k)=(1-2k,7-k)
向量CB=OB-OC=(5,1)-(2k,k)=(5-2k,1-k)
CA·CB=(1-2k)(5-2k)+(7-k)(1-k)=5k²-20k+12=5(k-2)²-8
当k=2时,CA·CB有最小值为-8,此时,OC=(4,2)