Bn=2-Sn,Bn-B(n-1)=Bn Bn=B(n-1)/2 =B1/2^(n-1)=1/3*(1/2)^(n-2)
An=2n
Cn=1/2AnBn=n/3*(1/2)^(n-2)=8n/3*(1/2)^(n+1)
Tn=C1+...+Cn 2Cn-C(n-1)=8/3*(1/2)^n
Tn=2Tn-Tn=2C1+2C2+...+2Cn-C1-...-Cn=2C1+(2C2-C1)+(2C3-C2)+...+(2Cn-C(n-1))-Cn
=2C1-Cn+8/3*[(1/2)^2+(1/2)^3+...+(1/2)^n]=8/3-(2+n)/[3*2^(n-2)]