∵AD,BE分别平分∠CAB,∠CBA
∴∠FBA=1/2∠CBA
∠FAB=1/2∠CAB
∴∠FBA+∠FAB=1/2(∠CBA+∠CAB)
∵△ABC是Rt△
∴∠CAB+∠CBA=90°
∴∠FBA+∠FAB=1/2×90°=45°
∴∠AFB=180°-(∠FBA+∠FAB)=180°-45°=135°
∵AD,BE分别平分∠CAB,∠CBA
∴∠FBA=1/2∠CBA
∠FAB=1/2∠CAB
∴∠FBA+∠FAB=1/2(∠CBA+∠CAB)
∵△ABC是Rt△
∴∠CAB+∠CBA=90°
∴∠FBA+∠FAB=1/2×90°=45°
∴∠AFB=180°-(∠FBA+∠FAB)=180°-45°=135°