第一题的思路是对平面上任意点x,考虑点列x,f(x),f2(x),f3(x).其中fi(x)是f对x的i次复合.因为位似比小于1,这是一个cauchy点列,必收敛于平面上一点,此点即是不动点.
这题在泛函里有个更一般的结果叫“压缩映射原理”;对于这道题,不论是否是平移旋转位似,只要任何两点在映射下的像点的距离与原距离的比有小于1的上界,就一定有唯一不动点.
第二题个人认为没有必要较这个真,有的定义在不同书里不同问题下都有细微差别,像什么原映射逆映射是不是单射满射,定义域值域哪个包含哪个,什么条件下有意义,都是人为定义的.只要遇到具体问题的时候思维严密就行了.