平方和公式n(n+1)(2n+1)/6 即1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6 (注:N^2=N的平方) 证明1+4+9+…+n^2=N(N+1)(2N+1)/6 证法一(归纳猜想法):1、N=1时,1=1(1+1)(2×1+1)/6=1 2、N=2时,1+4=2(2+1)(2×2+1)/6=5 3、设N=x时,公式成立,即1+4+9+…+x2=x(x+1)(2x+1)/6 则当N=x+1时,1+4+9+…+x2+(x+1)2=x(x+1)(2x+1)/6+(x+1)2 =(x+1)[2(x2)+x+6(x+1)]/6 =(x+1)[2(x2)+7x+6]/6 =(x+1)(2x+3)(x+2)/6 =(x+1)[(x+1)+1][2(x+1)+1]/6 也满足公式 4、综上所述,平方和公式1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6成立,得证.证法二(利用恒等式(n+1)^3=n^3+3n^2+3n+1):(n+1)^3-n^3=3n^2+3n+1,n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 .3^3-2^3=3*(2^2)+3*2+1 2^3-1^3=3*(1^2)+3*1+1.把这n个等式两端分别相加,得:(n+1)^3-1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,由于1+2+3+...+n=(n+1)n/2,代人上式得:n^3+3n^2+3n=3(1^2+2^2+3^2+.+n^2)+3(n+1)n/2+n 整理后得:1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6
1的平方加上2的平方加上3的平方加上4的平方一直加到n的平方=多少拜托了各位 谢谢
1个回答
相关问题
-
1的平方加上2的平方一直加到n的平方怎么算啊,还有证明过程
-
一个数学公式的推导1的平方加上2的平方再加上3的平方一直加到n的平方 等于什么我要的是推导过程
-
自然数列平方求和公式的推导过程1的平方加上2的平方加上3的平方一直加到n的平方上面这个数列的前n项和是多少写出推导过程方
-
3的平方加上4的平方等于5的平方,5的平方加上12的平方等于13的平方,N个式子是多少
-
1的平方分之一加上2的平方分之一……一直加到n的平方分之一的极限是多少啊?
-
14(a的平方加上b的平方加上c的平方)得于(a加上2b加上3c)的平方 则a:b:c等于
-
a的平方加上b的平方等于1,b的平方加上c的平方等于2,a的平方加上c的平方等于2,问ab+bc+ac的最小值是多少
-
6的平方加上3的平方等于多少?
-
1的平方除以1×3 加上 2的平方除以3×5 加上 3的平方除以5×7 加上.加上50的平方除以99成101
-
6的平方加上2的平方是多少?