∵A∈(π/2,π)
∴cosA<0
故cosA=-√(1-sin²A)=-√3/2
∵A-B∈(0,π/2)
∴cos(A-B)>0
故cos(A-B)=√[1-cos²(A-B)]=4/5
∴sinB=sin[A-(A-B)]=sinAcos(A-B)-cosAsin(A-B)=-1/2×4/5-(-√3/2)×3/5=(3√3-4)/5
∵A∈(π/2,π)
∴cosA<0
故cosA=-√(1-sin²A)=-√3/2
∵A-B∈(0,π/2)
∴cos(A-B)>0
故cos(A-B)=√[1-cos²(A-B)]=4/5
∴sinB=sin[A-(A-B)]=sinAcos(A-B)-cosAsin(A-B)=-1/2×4/5-(-√3/2)×3/5=(3√3-4)/5