解:
Sn
=a1+a2+a3+...+an
=[1+(1/2)^1]+[3+(1/2)^2]+[5+(1/2)^3]+...+[(2n-1)+(1/2)^n]
=[1+3+5+...+(2n-1)]+[(1/2)^1 + (1/2)^2 + (1/2)^3+...+(1/2)^n]
={n[1+(2n-1)]/2}+{(1/2)[1-(1/2)^n]/(1-1/2)}
=n^2+[1-(1/2)^n]
=n^2-(1/2)^n+1
解:
Sn
=a1+a2+a3+...+an
=[1+(1/2)^1]+[3+(1/2)^2]+[5+(1/2)^3]+...+[(2n-1)+(1/2)^n]
=[1+3+5+...+(2n-1)]+[(1/2)^1 + (1/2)^2 + (1/2)^3+...+(1/2)^n]
={n[1+(2n-1)]/2}+{(1/2)[1-(1/2)^n]/(1-1/2)}
=n^2+[1-(1/2)^n]
=n^2-(1/2)^n+1