证明:
利用正弦定理
a/sinA=b/sinB=c/sinC=2r
则 左=2rsin²A-2rsin²B
=r(1-cos2A)-r(1-cos2B)
=r(cos2B-cos2A)
=r{[cos[(A+B)-(A-B)]-[cos[(A+B)+(A-B)]}
=r [cos(A+B)cos[(A-B)+sin(A+B)sin(A-B)-cos(A+B)cos(A-B)+sin(A+B)sin(A-B)]
=2rsin(A+B)sin(A-B)
=2rsin(π-c)sin(A-B)
=2rsinCsin(A-B)
=csin(A-B)
得证.