当0≤x≤1时,f(x)=x^2;
当1≤x≤2时,0≤x-1≤1,f(x-1)=(x-1)^2,f(1)=1^2=1,所以当x≥1时,f(x)=(x-1)^2+1;
当2≤x≤3时,1≤x-1≤2,0≤x-2≤1,f(x-1)=(x-2)^2+1,f(x)=(x-2)^2+2;
…………
当n≤x≤(n+1)时,f(x)=(x-n)^2+n.
即f(x)=(x-[x])^2+[x],这里[x]=INT(x)=x的整数部分.
当x0,所以
f(-x)=(-x-[-x])^2+[-x],
因为f(x)是奇函数,所以
f(x)=-{(-x-[-x])^2+[-x]}=-(x-[x+1])^2-[x+1]
y=kx与y=f(x)在原点处相交,由奇函数的对称性,在x>0时再有两个交点即可.
由y=kx和y=(x-2)^2+2,得:
kx=(x-2)^2+2,即x^2-(k+4)x+6=0,
△=(k+4)^2-24,当k=-4±2√6时△=0,得:
k=-4+2√6时,直线y=kx与曲线y=f(x)在[2,3]上相切;
由y=kx和y=(x-1)^2+1,得:
kx=(x-1)^2+1,即x^2-(k+2)x+2=0,
△=(k+2)^2-8,当k=-2±2√2时△=0,得:
k=-2+2√2时,直线y=kx与曲线y=f(x)在[1,2]上相切;
所以
k∈(-2+2√2,-4+2√6)时,直线y=kx与曲线y=f(x)在(0,+∞)上有两个交点
由奇偶性,在(-∞,0)上也有两个交点,连同坐标原点,共有5个交点.
结论:
实数k的值为-2+2√2和-4+2√6.