(1+100+100^2+100^3+……+100^99)/(1+2+3+……+98+99+100+99+98+……+2+1)^50-1
=[(100^100-1)/99] / [(100*100)^50-1]
=(100^100-1)/99*1/(100^100-1)
=1/99
(1+100+100^2+100^3+……+100^99)/(1+2+3+……+98+99+100+99+98+……+2+1)^50-1
=[(100^100-1)/99] / [(100*100)^50-1]
=(100^100-1)/99*1/(100^100-1)
=1/99