1.函数y=sinxcosx+sinx+cosx的值域为?

5个回答

  • (1)y=sinxcosx+sinx+cosx

    令t= sinx+cosx=√2sin(x+∏/4),∴t∈[-√2,√2]

    则,t^2=(sinx+cosx)^2=1+2sinxcosx

    则,sinxcosx=(t^2-1)/2

    ∴y=t+(t^2-1)/2=(1/2)t^2+t-(1/2)

    令y=g(t)= (1/2)t^2+t-(1/2),t∈[-√2,√2]

    对称轴是t=-1,开口向上

    ∴最大值y=g(√2)= (1/2)( √2)^2+√2-(1/2)

    =√2+1/2

    最小值y=g(-1)= (1/2)( -1)^2+(-1)-(1/2)

    =-1

    所以,值域是[-1,√2+1/2]

    (2) y=cos(2x/5)+sin(2x/5)= √2sin[(2x/5)+∏/4]

    ∴最小正周期是T=2∏/(2/5)=5∏

    ∴相邻两条对称轴之间距离是d= T/2=5∏/2

    (3) ∵4tan(a/2)=1-〔tan(a/2)〕^2

    ∴2tan(a/2)/{1- [tan (a/2)]^2}=1/2

    ∴tana=2tan(a/2)/{1- [tan (a/2)]^2}=1/2

    又∵0