设x=√10cosa,y=√10sina
x+y
=√10(cosa+sina)
=√10*√2(√2/2cosa+√2/2sina)
=√20sin(a+π/4)
=2√5sin(a+π/4)
因为-1≤sin(a+π/4)≤1
所以-2√5≤x+y≤2√5
故x+y的取值范围是[-2√5,2√5]
设x=√10cosa,y=√10sina
x+y
=√10(cosa+sina)
=√10*√2(√2/2cosa+√2/2sina)
=√20sin(a+π/4)
=2√5sin(a+π/4)
因为-1≤sin(a+π/4)≤1
所以-2√5≤x+y≤2√5
故x+y的取值范围是[-2√5,2√5]