将△ACM顺时针旋转90°到△BCD的位置,
∴△ACM≌△BCD,
∴AM=BD,∠ACM=∠BCD,而∠MCN=45°,
∴∠DCN=45°,CM=CD,
∴△MCN≌△DCN,
∴MN=DN,
又∠A=∠DBC=45°,∴∠NBD=90°,
∴在直角△DBN中,
由勾股定理得:DN²=BD²+BN²,
∴MN²=AM²+BN².
将△ACM顺时针旋转90°到△BCD的位置,
∴△ACM≌△BCD,
∴AM=BD,∠ACM=∠BCD,而∠MCN=45°,
∴∠DCN=45°,CM=CD,
∴△MCN≌△DCN,
∴MN=DN,
又∠A=∠DBC=45°,∴∠NBD=90°,
∴在直角△DBN中,
由勾股定理得:DN²=BD²+BN²,
∴MN²=AM²+BN².