(cos^2)15°-(sin^2)15等于多少

2个回答

  • 这是因为:

    方法一:

    (cos^2)15°-(sin^2)15

    =(cos15+sin15)(cos15-sin15)

    =[sin(90-15)+sin15][sin(90-15)-sin15]

    =(sin75+sin15)(sin75-sin15)

    =2*sin(75+15)/2*cos(75-15)/2*2*cos(75+15)*sin(75-15)/2

    =4*sin45*cos30*cos45*sin30

    =√3/2.

    方法二:

    cos15°=cos(45-30)=cos45*cos30+sin45*sin30

    =√2/2*√3/2+√2/2*1/2

    =(√6+√2)/4.

    cos^2(15)=[(√6+√2)/4]^2=(2+√3)/4,

    sin15=sin(45-30)=sin45*cos30-cos45*sin30

    =√2/2*√3/2-√2/2*1/2

    =(√6-√2)/4.

    sin^2(15)=[(√6-√2)/4]^2=(2-√3)/4.

    (cos^2)15°-(sin^2)15=(2+√3)/4-(2-√3)/4

    =√3/2.