答:
三角形ABC中,a=4,b=3√2,C=45°
根据余弦定理:
c^2=a^2+b^2-2abcosC
=16+18-24√2*(√2/2)
=34-24
=10
c=√10
根据正弦定理:
a/sinA=b/sinB=c/sinC=2R
sinB=(b/c)sinC
=(3√2/√10)*sin45°
=(3/√5)*(√2/2)
=3/√10
=3√10/10
所以:
sinB=3√10/10
答:
三角形ABC中,a=4,b=3√2,C=45°
根据余弦定理:
c^2=a^2+b^2-2abcosC
=16+18-24√2*(√2/2)
=34-24
=10
c=√10
根据正弦定理:
a/sinA=b/sinB=c/sinC=2R
sinB=(b/c)sinC
=(3√2/√10)*sin45°
=(3/√5)*(√2/2)
=3/√10
=3√10/10
所以:
sinB=3√10/10