f(q)=(2sinqcosq+5/2)/(sinq+cosq)
=[(sinq+cosq)²+3/2]/(sinq+cosq)
=(sinq+cosq)+3/[2(sinq+cosq)]
≥2√{(sinq+cosq)×3/[2(sinq+cosq)]}=2√(3/2)=√6 (∵q∈[0,π/2]∴sinq+cosq>0)
最小值=√6
f(q)=(2sinqcosq+5/2)/(sinq+cosq)
=[(sinq+cosq)²+3/2]/(sinq+cosq)
=(sinq+cosq)+3/[2(sinq+cosq)]
≥2√{(sinq+cosq)×3/[2(sinq+cosq)]}=2√(3/2)=√6 (∵q∈[0,π/2]∴sinq+cosq>0)
最小值=√6