∫上限x下限0 f '(ln t) dt = ln(1+x) 变上限积分求导:
f '(lnx) = 1/(1+x)
=> f '(x) = 1/(1+ e^x)
=> f(x) = ∫ 1/(1+e^x) dx = ∫ e^(-x) / [ e^(-x) +1] dx
= - ln[ e^(-x) +1] + C
f(0)=0 => 0 = - ln2 + C => C=ln2
=> f(x) = ln2 - ln[ e^(-x) +1]
∫上限x下限0 f '(ln t) dt = ln(1+x) 变上限积分求导:
f '(lnx) = 1/(1+x)
=> f '(x) = 1/(1+ e^x)
=> f(x) = ∫ 1/(1+e^x) dx = ∫ e^(-x) / [ e^(-x) +1] dx
= - ln[ e^(-x) +1] + C
f(0)=0 => 0 = - ln2 + C => C=ln2
=> f(x) = ln2 - ln[ e^(-x) +1]