x+y+z=1,证明x^2+y^2+z^2大于等于1/3
1个回答
∵x+y+z=1
∴x²+y²+z²+2xy+2yz+2xz=1
∵x²+y²+z²+x²+y²+y²+z²+x²+z²≥x²+y²+z²+2xy+2yz+2xz=1
∴x²+y²+z²≥1/3
相关问题
已知x+y+z=1,x,y,z大于0,求证:x^2/(y+z)+y^2/(z+x)+z^2/(y+x)大于等于1/2
柯西不等式难题(在线等)设x,y,z大于等于0,x+y+z=3.求证x^1/2+y^1/2+z^1/2大于等于xy+yz
证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).
不等式的证明题x,y,z>0 证明2(x^3+y^3+z^3)>=x^2(y+z)+y^2(x+z)+z^2(x+y)
已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xy
已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xy
设x,y,z为正数,证明:2(x^3+y^3+z^3)≥(x^2)(y+z)+(y^2)(x+z)+(z^2)(x+y)
-(x-y+z)-2(x-y+z)-3(x-y+z),其中x-=1,y=1/2,z=-2
若x+y+z=2,x^2+y^2+z^2=2,1/x+1/y+1/z=1/3则 x^3+y^3+z^3=
设3sin(x-3y=2z)=x-3y+2z,证明(əz/əx)+(əz/əy)=1