F(x)=cosx-sin^2x
=cosx-(1-cos^2x)
=cosx-1+cos^2x
=cos^2x+cosx-1
=(cosx+1/2)^2-5/4
因为-1≤cosx≤1
对称轴为cosx=-1/2
所以最大值在cosx=1时取到
f(x)最大值=3/2^2-5/4=1
F(x)=cosx-sin^2x
=cosx-(1-cos^2x)
=cosx-1+cos^2x
=cos^2x+cosx-1
=(cosx+1/2)^2-5/4
因为-1≤cosx≤1
对称轴为cosx=-1/2
所以最大值在cosx=1时取到
f(x)最大值=3/2^2-5/4=1