解题思路:根据正态分布的性质,X+Y与X-Y均服从正态分布,且有P{X+Y≤E(X+Y)}=12,P{X-Y≤E(X-Y)}=12.
根据正态分布的性质,易知:X+Y,X-Y均服从正态分布,
根据数学期望与方差的性质:
E(X+Y)=E(X)+E(Y)=1,D(X+Y)=D(X)+D(Y)=2,
E(X-Y)=E(X)-E(Y)=-1,D(X-Y)=D(X)+D(Y)=2,
故:X+Y~N(1,2),X-Y~(-1,2),
所以,P{X+Y≤1}=[1/2],P{X-Y≤-1}=[1/2],
故应选:B.
点评:
本题考点: 二维正态分布的概率密度.
考点点评: 本题考查了正态分布的性质,是一个基础型题目,难度系数不大,只需要熟练掌握正态分布的特征即可.