解题思路:设大圆的半径为R,小圆的半径为r,根据“圆的面积=πr2”分别求出大圆的面积和小圆的面积,进而根据题意求比即可;根据“圆的周长=2πr”分别求出大圆和小圆的周长,进而求比即可.
设大圆的半径为R,小圆的半径为r,
πR2:πr2,
=(πR2÷π):(πr2÷π),
=R2:r2,
=52:32,
=25:9;
2πR:2πr,
=(2πR÷2π):(2πr÷2π),
=R:r,
=5:3;
答:大圆和小圆的面积比是25:9;大圆周长和小圆周长的比是5:3.
点评:
本题考点: 圆、圆环的面积;比的意义;圆、圆环的周长.
考点点评: 解答此题应明确:两个圆的半径比,即周长的比,面积比是半径的平方的比;用到的知识点:(1)比的意义;(2)圆的周长计算方法;(3)圆的面积计算方法.