a1+a2+a3=a1(1+q+q^2)=14/3 (1)
1/a1+1/a2+1/a3=1/a1*(1+1/q+1/q^2)=1/a1*(q^2+q+1)/q^2=21/8 (2)
(1)/(2)得(a1q)^2=16/9
则a2=4/3
a1+a2+a3=a2(1/q+1+q)=14/3
则q=1/2或q=2
由于数列是递增数列,则有q>1
所以有q=2.
a1=2/3
an=2/3*2^(n-1)
a1+a2+a3=a1(1+q+q^2)=14/3 (1)
1/a1+1/a2+1/a3=1/a1*(1+1/q+1/q^2)=1/a1*(q^2+q+1)/q^2=21/8 (2)
(1)/(2)得(a1q)^2=16/9
则a2=4/3
a1+a2+a3=a2(1/q+1+q)=14/3
则q=1/2或q=2
由于数列是递增数列,则有q>1
所以有q=2.
a1=2/3
an=2/3*2^(n-1)