这题直线斜率为什么一定存在?设椭圆C:(x^2/a^2)+(y^2/b^2)=1(a>b>0)的右焦点为F(1,0)且点

1个回答

  • (1)c=1,a^2=b^2+1,①

    1/a^2+1/(2b^2)=1,②

    把①代入②,1/(b^2+1)+1/(2b^2)=1,b^2=1,a^2=2,

    ∴椭圆的标准方程是x^2/2+y^2=1.③

    (2)设L:x=my+1,④

    把④代入③*2,得m^2y^2+2my+1+2y^2=2,

    整理得(m^2+2)y^2+2my-1=0,

    设A(x1,y1),B(x2,y2),Q(q,0),则y1+y2=-2m/(m^2+2),y1y2=-1/(m^2+2),

    QA*QB=(x1-q,y1)*(x2-q,y2)=(my1+1-q)(my2+1-q)+y1y2

    =(m^2+1)y1y2+m(1-q)(y1+y2)+(1-q)^2

    =[-(m^2+1)-2m^2(1-q)+(1-2q+q^2)(m^2+2)]/(m^2+2)

    =[m^2(q^2-2)+2q^2-4q+1]/(m^2+2)=-16/7,

    ∴7[m^2(q^2-2)+2q^2-4q+1]=-16(m^2+2),

    m^2(7q^2+2)+14q^2-28q+39=0,

    因7q^2+2≠0,故上式不能恒成立,于是不存在满足题设的点Q.