(1)c=1,a^2=b^2+1,①
1/a^2+1/(2b^2)=1,②
把①代入②,1/(b^2+1)+1/(2b^2)=1,b^2=1,a^2=2,
∴椭圆的标准方程是x^2/2+y^2=1.③
(2)设L:x=my+1,④
把④代入③*2,得m^2y^2+2my+1+2y^2=2,
整理得(m^2+2)y^2+2my-1=0,
设A(x1,y1),B(x2,y2),Q(q,0),则y1+y2=-2m/(m^2+2),y1y2=-1/(m^2+2),
QA*QB=(x1-q,y1)*(x2-q,y2)=(my1+1-q)(my2+1-q)+y1y2
=(m^2+1)y1y2+m(1-q)(y1+y2)+(1-q)^2
=[-(m^2+1)-2m^2(1-q)+(1-2q+q^2)(m^2+2)]/(m^2+2)
=[m^2(q^2-2)+2q^2-4q+1]/(m^2+2)=-16/7,
∴7[m^2(q^2-2)+2q^2-4q+1]=-16(m^2+2),
m^2(7q^2+2)+14q^2-28q+39=0,
因7q^2+2≠0,故上式不能恒成立,于是不存在满足题设的点Q.