设直线方程 y=k(x-1)+1 代入y^2=8x有
k^2x^2+[2k(1-k)-8]x+(1-k)^2=0
设直线与抛物线交于AB两点 横坐标为x1和x2 因为P中点
所以x1+x2=2 (1)
而 x1+x2=[8-2k(1-k)]/k^2 (2)
联立两式解得 k=4 直线方程为 y=4x-3
设直线方程 y=k(x-1)+1 代入y^2=8x有
k^2x^2+[2k(1-k)-8]x+(1-k)^2=0
设直线与抛物线交于AB两点 横坐标为x1和x2 因为P中点
所以x1+x2=2 (1)
而 x1+x2=[8-2k(1-k)]/k^2 (2)
联立两式解得 k=4 直线方程为 y=4x-3