原式化为:通分(a/ab-b²-b/a²-ab)=>(a²-b²)/2a²b²(a-b) =>
(a+b)/(2a²b²)+a²+b²/(2ab)
a²=4-2根号三,b²=4+2根号三,a+b=-2,ab=-2
即 (-2)/[2(-2)(-2)]+4-2根号三+4+2根号三/(-4)=-1/4+4-2根号三-1-根号三/2
=11/4-5根号三/2
原式化为:通分(a/ab-b²-b/a²-ab)=>(a²-b²)/2a²b²(a-b) =>
(a+b)/(2a²b²)+a²+b²/(2ab)
a²=4-2根号三,b²=4+2根号三,a+b=-2,ab=-2
即 (-2)/[2(-2)(-2)]+4-2根号三+4+2根号三/(-4)=-1/4+4-2根号三-1-根号三/2
=11/4-5根号三/2