化简1/2!+2/3!+3/4!+.+(n-1)/n!n∈n*,n≥2
1个回答
(n-1)/n!
=n/n!-1/n!
=1/(n-1)!-1/n!
所以原式=1/1!-1/2!+1/2!-1/3!+……+1/(n-1)!-1/n!
=1-1/n!
相关问题
设n∈N+,且n>2,化简:3/(1!+2!+3!)+4/(2!+3!+4!)+...+(n+2)\n!+(n+1)!+
定义n!=1*2*3*.*(n-1)*n,例如4!=1*2*3*4,化简1/2!+2/3!+n/(n+1)!
化简1/(2!)+2/(3!)+3/(4!)……(n-1)/(n!)
(n-2)*(n-3)*(n-4)……*1/2化简等于什么
阶乘化简1/2!+2/3!+3/4!+...+n/(n+1)!化简.
化简一元二次方程,n^2+(n+1)^2+(n+2)^2=(n+3)^2+(n+4)^2
化简:(n+1)(n+2)分之1+(n+2)(n+3)分之1+(n+3)(n+4)分之1
化简{[2*1d+3*2d+4*3d+……+n(n-1)d]+n(n-1)/2*d*a}/[(n-1)n*d/2]
化简:1*1!+2*2!+3*3!+.+n*n!
化简求值 2m-(-3n+(4n-2(3m-n)+5n))其中m=-(1/2) n=-1