设P点(x,0)
PA^2=AO^2+PO^2=3^2+x^2
PB=BO-PO=6-x
AB^2=3^2+6^2=45
(1)PA=PB
有PA^2=PB^2
3^2+x^2=(6-x)^2
9+x^2=36-12x+x^2
12x=27
x=9/4
所以P(9/4,0)
(2)PB=AB
PB^2=AB^2
(6-x)^2=45
6-x=(正负)3*根号5
x=6-3*根号5
x=6+3*根号5
P(6-3*根号5,0)
P(6+3*根号5,0)
(3)PA=AB
PO=OB
x=-6
P(-6,0)