有几个公式:
(1)1+2+3+.+n=n(n+1)/2 ;
(2)1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6 ;
(3)1^3+2^3+3^3+.+n^3=n^2*(n+1)^2/4 ;
因为 n(n+1)(2n+1)=2n^3+3n^2+n ,
所以 Sn=2(1^3+2^3+.+n^3)+3(1^2+2^2+.+n^2)+(1+2+.+n)
=2n^2*(n+1)^2/4+3n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)/2*[n(n+1)+2n+1+1]
=n(n+1)^2(n+2)/2 .