求和Sn=1*2*3+2*3*5+n(n+1)(2n+1)

2个回答

  • 有几个公式:

    (1)1+2+3+.+n=n(n+1)/2 ;

    (2)1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)/6 ;

    (3)1^3+2^3+3^3+.+n^3=n^2*(n+1)^2/4 ;

    因为 n(n+1)(2n+1)=2n^3+3n^2+n ,

    所以 Sn=2(1^3+2^3+.+n^3)+3(1^2+2^2+.+n^2)+(1+2+.+n)

    =2n^2*(n+1)^2/4+3n(n+1)(2n+1)/6+n(n+1)/2

    =n(n+1)/2*[n(n+1)+2n+1+1]

    =n(n+1)^2(n+2)/2 .